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Abstract-A method is described of evaluating the creep deformation rate of a body subject to combined
static and dynamic loading. The method is applied to a beam problem and it is shown that the solution may be
expressed in terms of a reference stress history which possesses both a static and a dynamic component,
independent of material parameters. Experiments on lead beams are shown to correlate quite closely with
predicted behaviour.

INTRODUCTION
The analysis of the creep behaviour of a structure subjected to the variety of forces which occur
during its design life remains amongst the more intractable problems of structural analysis.
Inherent difficulties in such analyses arise in the description of the material behaviour as well as
in the complexity of the necessarily non-linear structural analysis. Provided an adequate material
description can be found, in principle it is possible to carry through a complete numerical
solution, although, in practice the information gained does not always justify the considerable
effort involved.

The situation is exemplified by the class of problems considered in this paper, which typifies
the creep problems which occur in power producing plant. We assume that the structure is
subjected to two distinct classes of loading. Constant loads exist which represent various types of
dead loading and pressures. Superimposed upon these is a dynamic loading which causes
vibration of the structure. Individually neither loading system would be likely to constitute a
creep problem but we are concerned with the effect of their interaction through the non-linear
material characteristics.

The purpose of this paper is to demonstrate that considerable insight into the problem may
be gained through relatively simple calculations. The method described is based upon bounding
theorems derived by the author[ll, although the solution method may be understood without
reference to these bounding solutions. The material behaviour is described by an elastic/viscous
constitutive relationship, which, for uniaxial stress u possesses the form

e=e+v
e=u/E and V!vo=(u/uo)" (1)

where e and v denote elastic and viscous strains respectively. The constant n will be taken as an
odd integer and creep rate Vo corresponds to stress uo. It cannot be claimed that these equations
provide an adequate description of the behaviour of metals under rapid cyclic stresses, and it is
used here as a model material which contains many of the elements of behaviour which are
observed when stationary creep conditions are achieved. The analysis finally produces a
"reference stress" history for the structure and loading history which is independent of the creep
index n, and is therefore, in a restricted sense, independent of the details of the material
description.

The analysis relies upon the following observation:- In a structure subjected to both static and
dynamic loading two distinct time scales are involved. The most obvious time scale is that
observed in the dynamic loading, for example the cycle time of the lowest resonance frequency,
which for all practical structures may be considered as being measured in seconds or fractions of
a second. The other time scale is provided by the material characteristics. A material time scale
can be defined as the time taken for creep strain v to accumulate to the value of the elastic strain
at a given stress. As the material model is non-linear this time will depend upon the stress and for
a structure a suitable stress will be either the maximum or some mean stress. Let us suppose that
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we require a structure to survive for one year with a maximum accumulated creep strain of 1%
say, which may be expected to be of the order of 10 to 20 elastic strains (these values are very
approximate). Hence it is necessary to design the structure with stress levels such that the
material time scale is therefore several orders of magnitude greater than the loading cycle. Of
course, many practical design situations require design lives of up to 30 years and the material
time scale is then increased even further.

The connection between this observation and bounding theory is described in a recent
paper [1] for quasi-static loading. For cyclic loading it was shown that an upper bound on the total
energy dissipated (by formation of creep strains) was bounded from above by the dissipation
associated with the stress history

q* = et +p, (2)

where ~ is the linear elastic solution to the problem (i.e. the solution assuming Ii = 0) and p is a
time constant residual stress field. The optimal work bound required the condition that the
accumulated creep strain per cycle due to q* was compatible. It was argued that this stress
history corresponded to the actual solution when the cycle time was zero, and therefore
provided a good approximation when the cycle time was small compared with the material time
scale. Although the solution provided a bound on the inelastic work, it also appears that generally
the displacements predicted by this solution are greater than those that would be predicted by a
complete solution.

In the dynamic problem discussed here, the bounding theory is described in [2], although the
completely analogous arguments to these in [I] are not included. In fact the extension to the
dynamic situation is quite trivial and merely requirements the reinterpretation of i in (2) as the
dynamic elastic solution.

The procedure adopted in this paper is as follows. In Section 2 we derived the exact solution
assuming that the cycle time is infinitesimally small, thereby obtaining a solution of the form (2).
In Section 3 we derive this solution for two simple problems involving the vibration of a beam.
These solutions are interpreted in terms of a reference stress history and thereby directly relate
the behaviour of these structures to a beam flexure test composed of a varying sinusoidal moment
superimposed upon a content moment. Although the correlation is necessarily approximate the
accuracy is remarkably good. We therefore provide an extension to the dynamic situation of the
reference stress method which has been used for static loading for some years (a review of this
method is given by Marriott [3]). In Section 4 an approximate analysis is described which
provides a solution of sufficient accuracy over most of the frequency range.

In the final Section 5, experiments on lead beams are described which indicate that the
theoretical predictions may be adequate for all practical purposes.

The methods described in this paper indicate that relatively simple calculations can provide
considerable insight into the behaviour of creeping structures under dynamic loading conditions.
The extension of these methods to more complex structures will be discussed in a future paper.

2. ANALYTIC PROCEDURE

Consider a structure which is subjected to dead loads Pi over its surface, body forces Fi and
dynamic loads p/(t) and perhaps dynamic displacements U;(t). The dynamic loads are assumed
cyclic with a cyclic time At.

The material possesses a stress history q and strain history ~. These quantities may be
interpreted as stress and strain tensors within a continuum or, alternatively, as generalized
stresses and generalized strains, such as moments and curvatures, within a beam or plate
element. The stresses q are subject to equilibrium equations which involve accelerations ~

arising from displacements y and density distribution 7/. Similarly ~ are subject to
compatibility equations. Neither of these sets of equations needs to be specified in detail.

The material is described in terms of elastic strains ~ and creep strain !! so that,

~=~+~

~=Cq

(3a)

(3b)
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v = vof(u/uo)- --
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(3c)

where C denotes a matrix (or tensor) of elastic constants and f some vector (or tensor) function
of q. For convenience we assume f is homogeneous of order nin the components of q, but this
assumption is not essential to the-arguments.

The elastic solution to the problem, which we denote by fl, arises when we set 11 = O. This
solution depends upon the cycle time !:it, and, depending upon the initial condition at t = 0, will
contain some transient response. We will be concerned with times sufficiently large (in paractice a
few cycles after t = 0) for steady state conditions to have set in, so that the elastic solution is
cyclic with period !:it, and all free vibration of the body is ignored. We further assume that the
stress history has achieved a cyclic state so that q(t) = q(t +!:iT).

The eqns (3) may be expressed in two alternative forms, in terms of the variation of field
quantities within a cycle and in terms of the variation from cycle to cycle.

To evaluate the behaviour within a cycle we transform to time variable T and to where

Hence to denotes a time at the beginning of a cycle and O:!!O; T :!!O; 1. Further we introduce a
characteristic elastic modulus E (such as the uniaxial Young's modulus) and a time t* which
equals the time for creep strain to equal a characteristic elastic strain (such as uniaxial elastic
strain) at stress Uo

t* = uo/(Evo).

In terms of these quantities eqns (3) becomes

• j •
{=5' +~

!=C' ~(uo/E)
~ = (!:it /t*)(uo/E)f(~)

where

de
~ = q/uo, C/ = C/E and dT = eetc.

(4a)

(4b)

(4c)

Note that both equilibrium and compatibility equations are independent of t *.
If Uo is chosen so that ~ is of order unity then E. becomes small compared with eif t* ~ !:it. In

the limit as !:it /t*~ 0 then the eqns (4) become identical to the elastic equations and hence

q(T, to) = !t(T) + p(to) (5)

where p(to) is a static residual stress field existing at time t = to, i.e. p(to) satisfies the static
equilibrium equations and is in equilibrium with zero applied loads on ST.

The accumulation of strain in time t* is given by

(6)

most remain finite in the limiting process and most satisfy the compatibility conditions.
Although these conditions are only exactly satisfied in the limit as !:it /t*~ 0 they should

provide a satisfactory approximation when !:it /t * is small. The boundary value problem so posed
requires the evaluation of a constant static equilibrium stress field p such that the creep strain
accumulated over time t * (or equivalently, over a cycle) should be-compatible. Effectively the
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analysis assumes that the rate of change of stress during a cycle is so rapid that the response of
the structure is purely elastic. The creep strain accumulates within each cycle is insufficient to
effect these rapid changes, but will, over a period of time, be sufficiently pronounced to form a
distribution of residual stresses which allows accumulation of strains which are compatible with a
displacement field.

The analysis effectively uncouples the dynamic response of the strucutre from the long term
creep deformation and the two aspects of the behaviour are made compatible through the
compatibility of the average strain rate i. of eqn (6). The uniqueness of the residual stress field p

so defined was proven in (l) for quasi-static case for the potential flow law -

where cf> denotes a homogeneous function of degree one. The proof remains essentially
unchanged for the dynamic case and will not be repeated here.

In the next section the analysis is carried through for a beam problem.

3. VIBRATION OF A BEAM

Consider the beam configuration shown in Fig. 1. A uniform beam of length I, is encastre at
x =0 and subjected to prescribed lateral displacement at x =1 of amplitude 6 and frequency
W/27T

y(l) = 6 cos wt. (8)

The beam has uniform cross section with second moment of area I and area A. The material has
Young's modulus E and density y. A constant load w/unit length acts vertically on the beam.

In the context of this problem, adopting the assumptions of classical linear beam theory, there
exists a single generalized stress, the moment M and corresponding generalized strain, the
curvature

where y denotes the lateral deflection of the beam. Corresponding to eqn (3) we write

K.= -M/EI

K. = -Ko(M/Mo)",

(9)

(lOa)

(lOb)

(lOc)

where KO denotes the creep curvature rate corresponding to moment Mo.
The elastic response of the beam has two components, those due to the imposed end

deflection and those due to the applied load.
The elastic dynamic response of the beam is governed by the differential equation (see for

example (4»

(11)

wjunlt length

I
yl€l.ocos w t

y

Fig. I. The beam problem.
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and the steady state solution for end deflections given by (8) is,

y = (8 cos wt IP)«sin kl + sinh kl)(cos kx - cosh kx)

- (cos kl +cosh kl)(sin kx - sinh kx»

where

k = y(wla)

and

P = 2(sinh kl cos kl- sin kl cosh kl).
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Resonant frequencies correspond to the roots of P = O. The elastic bending moment distribution is
given by

M= -EI:;~
= (Elk 28 cos wtIP)«sin kl +sinh kl)(cos kx +cosh kx)

- (cos kl +cosh kl)(sin kx +sinh kx».

The complete moment distribution corresponding to (}'* becomes

M* = M(x, t) + wx(l- x)/2 +R(l- x)

(12)

(13)

where R donotes the sum of the reactions at x = 1 due to the elastic response to wand the
residual stress field. The value of R becomes determinate from the condition that the average
accumulated creep curvature over a cycle

(2""'"
~ = -(wl21r)Jo (KoIMon)M*n dt, (14)

shall be compatible with zero displacement at x = l. (This condition replaces the compatibility
equations of the general argument). By the principle of virtual work, this condition is satisfied
provided ~ satisfies

f ~(l-x)dx=O. (15)

Combination of eqns (12)-(15) yields a single transcendental equation for R, which may be solved
numerically by Newton's method. The average displacement rate may be evaluated by
integration of ~ to yield y. The most convenient way of evaluating this quantity is from the
principle of virtual work corresponding to a point unit load applied at some arbitrary point x I

along the beam, with no support at x = l:

y= f' (x' - x)~(x) dx.

These calculations were carried out in terms of a number of non-dimensional quantities

~= ~l = lY(:!a~,. A = 8Ellwl
4

}

Y= y(Molwl ) II Ko

R= Rlwl, l' = tIM = wtI2'11'.

(16)

(17)

The maximum elastic deflection under the action of applied loads w is given by
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Ymax =0.0054 wI 3/EI, and therefore a value of A =0.00054 would correspond to the situation
when the amplitude of the end displacement 8 equals the maximum static elastic deflection.
Variation in K corresponds to variation in frequency OJ and the natural frequencies correspond
to K 1 = 3.927, K2 = 7.069, K 3 = 10.210 etc., the roots of P = O. the nondimensional displacement
rate y therefore depends upon K, A and n. The eqns (10)-(14) may easily be re-expressed in
terms of these quantities but will not be re-written here in their non-dimensional form.

The eqn (15) was solved for R for a range of values of K and A, and values of n = 3, 5, 7 and
9. For n = 1 there is no interaction between the dynamic and static loading and the solution would
always be the static solution.

First consider the case A =8 =0, the static problem. The maximum value of y= Yrnax occurs
near x = 0.6 I for all values of n. For such problems, the reference stress method [3] provides a
useful method of reducing the solution to a convenient form. Introducing a parameter a into the
expression for y we obtain

where

Mo = wF/a.

(18a)

(18b)

If it is possible to find a value of a so that ya" is constant and independent of n then (1Sa)
provides an expression for y directly in terms of the curvature rate ,(0 corresponding to a
reference moment Mo, independent of material constants, thereby directly relating the structural
behaviour to a material test. Of course no such a exists, but it is usually possible to find a value of
a for which ya" changes only slightly over a range of n values. A value of a was calculated
which gave identical values of Yrnaxa" for n = 3 and n = 11, and the results are given in Table 1.
Hence we infer that the solution

Ymax = 0.05736 F,(o

where

Mo= wF/12.650, (19)

provides an overestimate with a maximum error of about 5% over the range of values of n. This
value of Mo may be compared with the upper bound value given by Ponter and Leckie (5)

(20)

where WL denotes the plastic limit load corresponding to a plastic bending moment Mp • As

(21)

Table I. Static creep solution (A = 0)

Beam with built-in and simply supported ends
a = 12.650

n ya"
3 0.05736
5 0.05461
7 0.05506
9 0.05736

Beam with both ends simply supported
a = 8.482

n ya"
3 0.09898
5 0.09584
7 0.09682
9 0.09898
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which provides a slightly higher value than that of (19).
If the reference stress method possesses an extension to the dynamic case, the reference

stress history may be expected to be of the form

MoC.t) = wF/a +mocoswt, (22)

where mo denotes the amplitude of a fluctuating moment history which corresponds to the
dynamic response of the structure. Clearly mo will depend upon both A and K. As the dynamic
stresses are proportional to the activating amplitude 8, it suggests that mo may be expressed in the
form

(23)

where Z denotes a function of K only. For consistency with (19), the maximum deflection rate
would be given by

(2'0""
yrnax = 0.05736 F(w/27T) Jo ,coC.t)dt, (24)

where ,(0 is the curvature rate corresponding to the moment history (22). To test whether this
conjective has any validity values of Z were calculated which would make these expressions
exact for various values of n, A and K. Table 2 shows the results for this calculation for two
values of K. Values of Z were evaluated by Newton's method, using the values of ycomputed
from the structural calculation. The range of values of A covers several orders of magnitude in
the value of y. The values of AZ vary from 3.10-3 to 3 and correspond to the situation from where
the dead loads dominate to where the dynamic loads dominate. For both values of K the
variation is remarkably small and the maximum differences are of the order of 4% for K = 2.5
and 2% for K =3.9. The latter value of K lies close to the resonant frequency (K. =3.927) and

Table 2. Values of Z for beam problem in Fig. I

K =2.5
A n =3 n =5 n =7 n =9

0.0001 31.636 30.889 30.638 30.534
0.0002 31.636 30.888 30.636 30.531
0.0003 31.636 30.887 30.634 30.526
0.0004 31.635 30.886 30.631 30.520
0.0005 31.635 30.885 30.626 30.511
0.0006 31.635 30.883 30.621 30.501
0.0007 31.635 30.880 30.615 30.489
0.0008 31.634 30.878 30.607 30.475
0.0009 31.634 30.875 30.599 30.459
0.001 31.634 30.871 30.590 30.441

K =3.9
A n =3 n =5 n =7 n =9

0.0001 3506.9 3494.6 3485.6 3479.1
0.0002 3504.6 3487.2 3478.6 3474.2
0.0003 3499.4 3485.0 3477.5 3473.7
0.0004 3492.7 3483.3 3477.1 3473.7
0.0005 3486.3 3489.4 3475.7 3473.4
0.0006 3480.8 3473.2 3472.3 3471.8
0.0007 3476.5 3465.7 3466.4 3468.0
0.0008 3473.1 3457.8 3458.4 3461.6
0.0009 3470.4 3450.1 3449.2 3453.0
0.001 3468.3 3443.0 3439.6 3442.6
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the values of Z are correspondingly higher. For all practical purposes we may take Z as the
higher value, thereby achieving an over-estimate of the maximum deflection rate. Hence we
arrive at the approximate relationship

(2"''''
Ymax== 0.05736 [2(w/27r) Jo ~o(t)dt

Mo(t) == (wl 2/12.650)(l +(~EI/wl4)Z cos wt), (25)

where Z == 31.6 for K == 2.5 and Z == 3500 for K == 3.9. These values are overestimates and the
exact values obtained by these processers will obviously vary with the method adopted. The
principal conclusion is that such a correlation is possible and suffers from a relatively small error.

To find the variation of Z with K requires the evaluation of Z for a fixed value of n and A.
As, in both the cases of Table 2, small values of both A and n have produced the largest values of
Z, a sequence of such calculations were carried out for n == 3 and A == 0.001 and the results are
displayed in Fig. 2.

Although the position of the maximum deflection remained relatively constant in position, the
shape of the deflection rate contours do change with frequency and a sequence of such contours
are shown in Fig. 3.

The method was also applied to the statically determinate problem which arises when the
beam is assumed to be simply supported at x == O. In this case the dynamic elastic solution is given
by

y == ~ cos wt (sin kl sinh kx +sinh kx sin kx)/P

P == 2sin kl sinh kl. (26)

The resonant frequencies are given by K == 2m7T, m == 1, 2, 3 etc. The history M* becomes

M* == M+ wx(l- x)/2, (27)

as there exists no residual stress field. The displacement rate at a point along the beam is given by

z
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y(x') == Jo ali dx,

I
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~ Approx. analysis
/

/
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/

\

(28)

K1 K2 K:>,10 '--_-'-- -.:0 ---":--

3 4 5 6 7 8 9 10 K

Fig. 2. Variation of dynamic reference stress parameter Z with frequency parameter K for beam problem of
Fig. I.
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Fig. 3. Beam problem of Fig. I. Creep deftections for K = 2.0,4.0 and 7.1.

M=-x'(l-x), X'~X

=-x(l-x'), X;;l:X'.
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(29)

The moment distribution M corresponds to the moments at x due to a point load at x'. The
curvature rate i is given by (14) and (27).

The procedure adopted was identical to that of the previous example and the appropriate
value of a for A = 0 and associated values of ya" are given in Table 1. Equation (21) yields the
value of a = 8 giving a slightly higher value of Mo, as expected. The values of Z for two values of
K, (K. = 3.1416) are given in Table 3 which shows only slight variations with nand Z although, in
this case, the largest values correspond to larger values of n and A. Hence corresponding to eqn
(25) we obtain

(2..,..
Ymax = 0.09898/ 2w/27r Jo Ko dt

Mo{t) = (w/ 2/8.482)(l +(8EIZ/wJ4) cos wt),

where Z = 9.66 for K =2.0 and Z = 9.09 for K = 3.1.

Table 3. Value of Z for simply supported beam

K=2.0
A n = 3 n =5 n =7 n =9

0.001 9.6229 . 9.6227 9.6225 9.6224
0.003 9.6230 9.6227 9.6225 9.6826
0.001 9.6230 9.6227 9.6225 9.6224
0.003 9.6230 9.6227 9.6226 9.6226
O.oI 9.6232 9.6233 9.6237 9.6242
0.03 9.6243 9.6264 9.6293 9.62327
0.1 9.6269 9.6417 9.6534 9.6618

K = 3.1
A n =3 n =5 n =7 n =9

0.0001 901.20 905.04 906.31 908.81
0.003 901.20 905.05 907.33 908.85
0.001 901.21 905.14 907.46 908.98
0.003 901.21 905.27 907.60 909.11
0.01 901.21 905.31 907.66 909.18
0.03 901.21 905.31 907.66 909.19
0.1 901.21 905.31 907.67 909.19

USS Vol. 12. No. 12-C
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4. APPROXIMATE PERTURBATION ANALYSIS

Although the method of analysis described in the last section can be carried out without
difficulty for a simple beam problem, for more complex problems the analysis becomes tedious.
As Z remains relatively constant with A, the non-dimensional dynamic amplitude, it may be
expected that a good approximate value can be found by considering the extreme case when A is
large or equivalently when w is small compared with the maximum value of M!F. Such an
analysis can be achieved by expanding the governing equation for the beam problem, eqns (15)
and (16) in a series in wand terminating the series at the linear term in w. The first order solution
so obtained may then be correlated with the corresponding expansion of the reverence stress
solution eqns (23) and (24) yielding Z for a given value of K. The details of this analysis are given
in the Appendix, and the resulting values of Z for N = 3 are shown as the dashed line in Fig. 2. The
values are indistinguishable from the exact analysis except for small values of K.

This approximate analysis can be shown to be equivalent to solving a linear problem, and
yields a solution directly by integration.

5. EXPERIMENTAL STUDY

A sequence of experiments were conducted on lead beams at room temperature to assess the
accuracy of these theoretical predictions. Beams of length 30.98 em, width 2.54 cm and depth
0.635 cm were cut from a sheet of commercially pure lead which had been cast into an ingot
1.27 cm thick and then reduced by rolling in two directions.

Measurements of stationary state creep rate were made for two test specimens which were
machined from the sheet in a direction parallel to the axis of the beams, thereby minimizing any
effects of anisotropy which may be present. Each test specimen contained three separate lengths
of constant cross-sectional area, to which strain/gauges were attached. Hence, by suitable choice
of loads, six creep rates were obtained within the stress range 0.4 to 0.8 kg/mm2

• A graph of log u

against log v' where v' is the stationary state creep rate, is shown in Fig. 4, and it can be seen
that the data correlates well with n = 9.

The beams were mounted with one end restrained from vertical movement and rotation in a
clamp. The other end was mounted in a ball race pivot which allowed rotation and horizontal
movement. The ball race pivot was attached to the actuator of a Losenhausen servo-hydraulic
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Fig. 4. Stationary state creep rates of lead.

Fig. 5. Experimental values of ;(yD), the average maximum deflection rate for increasing values of dynamic
elastic deflection yD. y.... is the maximum static elastic deflection.
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testing machine which could be programed to move vertically at a preset amplitude and
frequency. The central deflection was measured by a thin beam extensometer. This consisted of a
thin steel cantilever which had strain gauges attached to its surface near the clamped end, and
provided both an accurate measurement of displacement and produced a negligible restraint on
the vibration of the beam. The response of the extensometer was recorded on a brush high speed
dynamic pen recorder.

The principal difficulty of the experimental configuration was that the Losenbausen was
capable of producing adequate amplitudes of beam end deflection only at frequencies which were
small compared with the lowest natural frequency of the lead beam which was approximately
50 Hz. The experiments were therefore conducted at frequencies very close to the lowest natural
frequencie, so that substantial vibration of the beam could be achieved with small beam end
amplitude 8. In the vicinity of the natural frequency it was found from computed values that

(31)

where yO denotes the amplitude of the elastic vibration at the mid-point of the beam and
Ymax "" 0.0054 wP/EI, the maximum elastic static deflection under self-weight. Taking the density
of lead as 11300 kg/m2 and E"" 1.4· 103 kg/mm2 we find Ymax "" 0.139 mm.

Hence from eqn (25) the theory predicts that the maximum average deflection rate y(yO) as
a function of the dynamic amplitude yO is given by

(32)

and n "" 9.
Tests were conducted on three nominally identical beams. Each beam was first allowed to

creep under self-weight until a stationary creep rate was achieved. A small end amplitude 8 was
then commenced and the response of the beam at the position of maximum deflection rate was
recorded for a period until the average creep rate y achieved a constant value. These time
intervals were of the order of 30 min. From the chart traces both yO and ycould be calculated.
The end amplitude was then increased, and by this means a set of values of ywere found for
increasing yD. Maintenance of a constant yO over an extended time period proved difficult but
could be generally maintain within 10% of a constant value. The experimental points so obtained
for three separate beam tests are shown in Fig. 5, where a fair degree of scatter can be seen. The
prediction of the formula (32) is shown and can be seen to overestimate yat lower amplitudes. As
the reference stresses are somewhat less than those which yield a value of n "" 9, this may be
explained by the fact that n usually reduces with stress.

Considering the simplicity of the material model and the inherent difficulties of carrying out
controlled experiments of this type, the correlation can be considered satisfactory. As the value
n "" 9 is high, the vibration of the beam causes a rapid increase in the creep rate. A value of yD
equal to the static elastic deflection causes an order of magnitude increase in the creep rate.
Naturally, smaller values of n will produce a less dramatic effect. Nevertheless it is clear that the
presence of vibration can have a considerable effect on the creep rate of structures.
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APPENDIX: APPROXIMATE SOLUTION OF BEAM PROBLEMS
The analysis assumes that w is small and eqn (14) is expanded as a series in w:

dK W K f'~IW{, [X(I-X) J }IJ.t =Z1T M
o
" 10 M +R(O)(I-x)" +IlW -Z-+R'(O)(/ -x) [AI +R(O)(I-x))"-' dt +O(w')

where R =R(w) and R' =(dRldw).
The first term corresponds to the curvature rate when w =O. The corresponding end reaction R (0) =0 and hence the

contribution from the first term is zero. Ignoring terms involving w' the compatibility eqn (15), applied to the second term of
(AI) yields

_ (I (X(I-X))P"-'(Ic-X)dX

R'(O)= 10 I Zf. (1- x)' P"-' dx
(AZ)

where P = (sin kl + sinh kl)(cos kx + cosh kx)- (cos kl + cosh kl)(sin kx + sinh kx). The deflection rate may now be
evaluated by substituting (A2) and (AI) into (16), which was evaluated at x = 0.57 I.

The reference stress expression (24) may be expanded in a similar way to yield

dY li
o

( I' ) ( 6EIZ )"-' f'~
dt =0.057361' Mo" 12.650 n F. 12.650 10 COS"-I T dT +O(w').

Equating this expression to that given by (16) yields Z directly.


